Definition 9.10:
A vector function $\vec{F}(\vec{X}, t)$ is said to satisfy a Lipschitz condition for $\vec{X}$ with a constant $L$, If

$$
\left|\vec{F}\left(\vec{X}_{1}, t\right)-\vec{F}\left(\vec{x}_{2}, t\right)\right| \leqslant L\left|\vec{x}_{1}-\vec{x}_{2}\right|
$$

where by $|\vec{X}|$ we denote the "norm" of the vector $\vec{x}$ :

$$
|\bar{x}|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}
$$

Theorem 9.2:
Let $\vec{F}(\vec{X}, t)$ be continuous int and satisfy a Lipschitz condition for $\vec{X}$ in the $(n+1)$-dim region $R \quad\left|\vec{X}-\vec{X}_{0}\right| \leq b, \quad\left|t-t_{0}\right| \leq a$.
Let $M$ be the upper bound of $|\vec{F}|$ in $R$. Then there exists a unique solution $\vec{X}(t)$ of the first order diff. eq.

$$
\frac{d \vec{X}}{d t}(t)=\vec{F}(\vec{X}, t), \quad \vec{X}\left(t_{0}\right)=\vec{X}_{0}
$$

defined over the interval $\left|t-t_{0}\right| \leq h=\min \left(a, \frac{b}{M}\right)$

Remark 9.5:
Consider the differential equation of $n$th order in one unknown

$$
\begin{equation*}
\frac{d^{n} x}{d t^{n}}=F\left(x^{(n-1)}, \cdots, x^{\prime}(t), x_{i} t\right) \tag{1}
\end{equation*}
$$

$\rightarrow$ can be replaced by a system of differential equations of first order

$$
\begin{align*}
& \frac{d x_{1}}{d t}=x_{2} \\
& \vdots  \tag{2}\\
& \frac{d x_{n-1}}{d t}=x_{n} \\
& \frac{d x_{n}}{d t}=F\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right)
\end{align*}
$$

It is easy to see that (1) and (2) are equivalent. Moreover, from Th. 9.2 we see that any unique solution is specified by

$$
\vec{X}\left(t_{0}\right)=\vec{X}_{0}
$$

where $\vec{X}(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$

Thus

$$
\stackrel{\rightharpoonup}{X}_{0}=\vec{X}\left(t_{0}\right) \stackrel{(2)}{=}\left(x_{1}\left(t_{0}\right),\left.\frac{d x_{1}}{d t}\right|_{t=t_{0}}, \cdots,\left.\frac{d x_{n-1}}{d t}\right|_{t=t_{0}}\right)
$$

$\rightarrow$ We need the initial value of $x_{1}=x$ and its first $(n-1)$ derivatives at initial time. One also says the solution-space is $n$-dimensional.

Let us now focus on the class of linear equations.
Definition 9.11:
The general farm of a linear diff. eq. of auth order is

$$
\begin{aligned}
L(y) & =a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots+a_{n}(x) y \\
& =b(x)
\end{aligned}
$$

The function $L$ is called a "differential operator". The characteristic features of a "linear operator" $L$ are
i) For any constants $\left(C_{1}, C_{2}\right)$,

$$
L\left(C_{1} y_{1}+C_{2} y_{2}\right)=C_{1} L\left(y_{1}\right)+C_{2} L\left(y_{2}\right)
$$

ii) For any given functions $p_{1}(x), p_{2}(x)$, and the linear operators,

$$
\begin{aligned}
& L_{1}(y)=a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y \\
& L_{2}(y)=b_{0}(x) y^{(n)}+b_{1}(x) y^{(n-1)}+\cdots+b_{n}(x) y
\end{aligned}
$$

the function

$$
p_{1} L_{1}+p_{2} L_{2}
$$

defined by

$$
\begin{aligned}
& \left(p_{1} L_{1}+p_{2} L_{2}\right)(y)=p_{1}(x) L_{1}(y)+p_{2}(x) L_{2}(y) \\
& =\left[p(x) a_{0}(x)+p_{2}(x) b_{0}(x)\right] y^{(n)}+\cdots \\
& \quad+\left[p_{1}(x) a_{n}(x)+p_{2}(x) b_{n}(x)\right] y
\end{aligned}
$$

is again a linear differential operator.
iii) Linear operators in general are subject to the "distributive law":

$$
\begin{aligned}
& L\left(L_{1}+L_{2}\right)=L L_{1}+L L_{2} \\
& \left(L_{1}+L_{2}\right) L=L_{1} L+L_{2} L
\end{aligned}
$$

iv) Linear operators with constant coefficients are commutative:

$$
L_{1} L_{2}=L_{2} L_{1}
$$

Note: In general, linear operators with non-constant coefficients, are not commutative: namely,

$$
L_{1} L_{2} \neq L_{2} L_{1}
$$

For instance, let $L_{1}=a(x) \frac{d}{d x}, L_{2}=\frac{d}{d x}$.

$$
\Rightarrow L_{1} L_{2}=a(x) \frac{d^{2}}{d x^{2}} \neq L_{2} L_{1}=\frac{d}{d x}\left[a(x) \frac{d}{d x}\right]
$$

Notation:
Hencefor th, we will denote the differential operator $L(y)=y^{\prime}$ by $D y$, the operator $L(y)=y^{\prime \prime}$ by $D^{2} y=D \circ D y$, where o denotes composition of functions. More generally, we write

$$
L(y)=y^{(n)}=D^{n} y
$$

$\rightarrow$ The general linear $n$-th order ODE then becomes

$$
\left[a_{0}(x) D^{n}+a_{1}(x) D^{n-1}+\cdots+a_{n}(x) I\right](y)=b(x)
$$

where $I$ is the identity operator

$$
I(y)=y=D^{0}(y)
$$

Definition 9.12:
If $y_{1}, y_{2}, \ldots, y_{n}$ are $n$ functions which are $(n-1)$-times differentiable, then the "Wronskian" of these functions is the determinant

$$
\begin{aligned}
W & =W\left(y_{1}, y_{2}, \cdots, y_{n}\right) \\
& =\left|\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|
\end{aligned}
$$

Remark 9.6:
If $w\left(x_{0}\right) \neq 0$ for some point $x_{0}$, then $y_{1}, y_{2}, \ldots, y_{n}$ are linearly indipendent. Indeed, consider the system of linear equations

$$
c_{1} y_{1}^{(i)}(x)+c_{2} y_{2}^{(i)}(x)+\cdots+c_{n} Y_{n}^{(i)}(x)=0, \quad(i=0, \cdots, n-1)
$$

for all $x \in I$. If $W\left(x_{0}\right) \neq 0$ for some $x_{0} \in I$, then we deduce $c_{1}=c_{2}=\cdots=c_{n}=0$.
Hence, the set of functions $y_{1}, \ldots, y_{n}$ is linearly indipendent.

Proposition 9.5 :
The Wronskian of $n$ solutions of the $n$-th order linear ODE

$$
L(y)=\left[D^{n}+a_{1}(x) D^{n-1}+\cdots+a_{n}(x)\right](y)=0
$$

is subject to the following first order ODE:

$$
\frac{d W}{d x}=-a_{1}(x) W
$$

with solution

$$
W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} a_{1}(t) d t}
$$

$\rightarrow$ the Wronkian is either identically zero, or vanishes nowhere.
Proof:
We give a proof here for the case of the second order equation only. Let

$$
L\left(y_{i}\right)=y_{i}^{\prime \prime}+a_{1}(x) y_{i}^{\prime}+a_{2} y_{i}=0, \quad(i=1,2)
$$

Note that

$$
\begin{aligned}
\frac{d W}{d x} & =\frac{d}{d x}\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
y_{1}^{\prime} & y_{2}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|+\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{cc}
y_{1} & y_{2} \\
-\left(a_{1} y_{1}^{\prime}+a_{2} y_{1}\right) & -\left(a_{1} y_{2}^{\prime}+a_{2} y_{2}\right)
\end{array}\right| .
\end{aligned}
$$

This yields

$$
W^{\prime}(x)=-a_{1}(x) W(x),
$$

so that

$$
W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x_{1}} a_{1}(t) d t}
$$

Note:
From the above we deduce the following:
i) if $W\left(x_{0}\right)=0$, then $W(x)=0 \quad \forall x \in I$.
ii) if $W\left(x_{0}\right)>0$, then $W(x)>0 \quad \forall x \in I$.
iii) if $W\left(x_{0}\right)<0$, then $W(x)<0 \quad \forall x \in I$.

In other words, if the sign of the Wronskian $W(x)$ given by a set of functions $\left\{y_{1}, \ldots, y_{n}\right\}$ changes on the interval $I$, then this set of functions cannot be a set of solutions for any linear homogeneous ODE.

Proposition 9.6:
If $y_{1}, y_{2}, \ldots, y_{n}$ are solutions of the linear ODE $L(y)=0$, the following are equivalent:
i) $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a set of fundamental solutions, or a basis for the vector space $V=\operatorname{Ker}(L)$
ii) $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent.
iii) $W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ at some point $x_{0}$
iv) $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is never zero.

