$$\begin{array}{l} \underline{\text{Definition 9.10:}} \\ A \quad \text{vector function } \overline{F}(\vec{X}_1t) \text{ is said to satisfy} \\ a \quad \text{Zipschitz condition for } \vec{X} \quad \text{with a constant L,} \\ \text{If} \quad \left| \overline{F}(\vec{X}_1,t) - \overline{F}(\vec{X}_2,t) \right| \leq L |\vec{X}_1 - \vec{X}_2| \\ \text{where by } |\vec{X}| \quad \text{we denote the "norm"} \\ \text{af the vector } \vec{X} : \\ |\vec{X}| = \left(x_1^2 + x_2^2 + \cdots + x_n^2 \right)^{\frac{1}{2}} \end{array}$$

Theorem 9.2:
Xet
$$\vec{F}(\vec{X},t)$$
 be continuous int and satisfy a
Xipschit? condition for \vec{X} in the (n+1)-dim
region \mathcal{R} $|\vec{X}-\vec{X}_0| \leq b$, $|t-t_0| \leq a$.
Xet \mathcal{M} be the upper bound of $|\vec{F}|$ in \mathcal{R} .
Then there exists a unique solution $\vec{X}(t)$
of the first order diff. eq.
 $\frac{d\vec{X}}{dt}(t) = \vec{F}(\vec{X},t), \quad \vec{X}(t_0) = \vec{X}_0,$
defined over the interval $|t-t_0| \leq h=\min(a, \frac{b}{M})$

Remark 9.5: Consider the differential equation of nth order in one un Known $\frac{d^{n}x}{d+n} = F(x^{(n-1)}, ..., x'(t), x; t) \quad (1)$ -> can be replaced by a system of differential equations of first order $\frac{dx_1}{d+} = X_{\lambda}$ (\mathcal{L}) $\frac{d x_{n-1}}{dt} = x_n$ $\frac{d X_n}{dt} = F(X_1, X_2, \dots, X_n; t)$ It is easy to see that (1) and (2) are equivalent. Moveover, from Th. 9.2 we see that any unique solution is specified by $\vec{X}(t_o) = \vec{X}_o$ where $\vec{X}(t) = (x_1(t), x_2(t), \dots, x_n(t))$

Thus

$$\overline{X}_{o} = \overline{X}(t_{o}) \stackrel{(2)}{=} (x_{i}(t_{o}), \frac{dx_{i}}{dt} \Big|_{t=t_{o}}, \dots, \frac{dx_{n-1}}{dt} \Big|_{t=t_{o}})$$

 \longrightarrow We need the initial value of $x_{i} = x$
and its first $(n-1)$ derivatives at initial
time. One also says the solution-space
is n-dimensional.
Wet us now focus on the class of
linear equations.
 $\underline{Definition \ 9.11}$:
The general farm of a linear diff. eq.
of uth order is
 $L(y) = a_{o}(x) y^{(m)} + a_{i}(x) y^{(n-1)} + \dots + a_{n}(x) y$
 $= b(x)$.
The function L is called a "differential
operator". The characteristic features of
a "linear operator" L are
i) For any constants (C_{11}, C_{2}) ,
 $L(C_{1}, Y_{1} + C_{2}, Y_{2}) = C_{1}L(Y_{1}) + C_{2}L(Y_{2})$

ii) For any given functions
$$p_i(x)$$
, $p_2(x)$,
and the linear operators,
 $L_1(Y) = a_0(x) Y^{(m)} + a_1(x) Y^{(m-1)} + \dots + a_n(x) Y$
 $L_2(Y) = b_0(x) Y^{(m)} + b_1(x) Y^{(m-1)} + \dots + b_n(x) Y$,
the function
 $p_1 L_1 + p_2 L_2$
defined by
 $(p_1 L_1 + p_2 L_2)(Y) = p_1(x) L_1(Y) + p_2(x) L_2(Y)$
 $= \left[p(x) a_0(x) + p_2(x) b_0(x) \right] Y^{(m)} + \dots + \left[p_1(x) a_n(x) + p_2(x) b_n(x) \right] Y$
is again a linear differential operator.
iii) Zinear operators in general are subject
to the "distributive law":
 $L(L_1 + L_2) = LL_1 + LL_2,$
 $(L_1 + L_2) L = L_1 + LL_2.$
iv) Zinear operators with constant coefficients
are commutative:
 $L_1 L_2 = L_2 L_1$

Note: In general, linear operators with
non-constant coefficients, are not
commutative: namely,
$$L_1L_2 \neq L_2L_1$$
.
For instance, let $L_1 = a(x) \frac{d}{dx}, L_2 = \frac{d}{dx}$
 $\Longrightarrow L_1L_2 = a(x) \frac{d^2}{dx^2} \neq L_2L_1 = \frac{d}{dx} \left[a(x) \frac{d}{dx} \right]$.

Notation: Hence for the will denote the differential operator $L(\gamma) = \gamma'$ by DY, the operator $L(\gamma) = \gamma''$ by $D^2\gamma = D \circ D\gamma$, where \circ denotes composition of functions. More generally, we write $L(\gamma) = \gamma^{(n)} = D^{-}\gamma$.

$$\begin{bmatrix} a_{0}(x) D^{n} + a_{1}(x) D^{n-1} + \cdots + a_{n}(x) I \end{bmatrix} (y) = b(x),$$

where I is the identity operator
$$I(y) = y = D^{o}(y).$$

$$W = W(Y_{1}, Y_{2}, -.., Y_{n})$$

$$= \begin{vmatrix} Y_{1} & Y_{2} & -.. & Y_{n} \\ Y_{1} & Y_{2} & -.. & Y_{n} \\ \vdots & \vdots & \vdots \\ Y_{1}^{(n-1)} & Y_{2}^{(n-1)} & Y_{n}^{(n-1)} \end{vmatrix}$$

$$= \underbrace{\operatorname{mark} \ 9.6:}{P_{n-1} (Y_{n}) + P_{n}} \quad \text{for some point } X_{n} \text{ then } X_{n} X_{n} = 1$$

Remark 9.6:
If
$$W(x_0) \neq 0$$
 for some point x_0 , then Y_1, Y_1, \dots, Y_n
are linearly indipendent. Indeed, consider the
system of linear equations
 $C_1 Y_1^{(i)}(x) + C_2 Y_2^{(i)} + \dots + C_n Y_n^{(i)} = 0$, (i=0,--in-i)
for all $x \in I$. If $W(x_0) \neq 0$ for some $x_0 \in I$,
then we deduce $C_1 = C_2 = \dots = C_n = 0$.
Hence, the set of functions Y_1, \dots, Y_n is
linearly indipendent.

$$\frac{\operatorname{Proposition} 9.5}{\operatorname{The Wronskian of n solutions of the n-th}}$$

$$\operatorname{The Wronskian of n solutions of the n-th}$$

$$\operatorname{order linear ODE}$$

$$L(Y) = \left[D^{n} + a_{i}(x) D^{n-1} + \dots + a_{n}(x) \right](Y) = 0,$$
is subject to the following first order ODE:

$$\frac{dW}{dx} = -a_{i}(x) W,$$
with solution
$$W(x) = W(x_{0}) e^{-\sum_{i=1}^{n} a_{i}(t) dt}$$

$$W(x) = W(x_{0}) e^{-\sum_{i=1}^{n} a_{i}(t) dt}$$

$$W(x) = W(x_{0}) e^{-\sum_{i=1}^{n} a_{i}(t) dt}$$

$$\frac{dW}{dx} = d_{i} \sum_{i=1}^{n} a_{i}(x) \sum_{i=1}^{n} e^{-\sum_{i=1}^{n} a_{i}(t) dt}$$

$$\frac{dW}{dx} = d_{i} \sum_{i=1}^{n} \sum_{i=1}^{n} a_{i}(x) \sum_{i=1}^{n} e^{-\sum_{i=1}^{n} a_{i}(t) dt}$$
Note that
$$\frac{dW}{dx} = d_{i} \sum_{i=1}^{n} \sum_{i=1}^$$

This yields

$$W'(x) = -a_1(x)W(x),$$

so that
 $W(x) = W(x_0)e^{-x_0}.$
Note:
 Π

From the above we deduce the following:
i) if
$$W(x_0) = 0$$
, then $W(x) = 0 \forall x \in I$.
ii) if $W(x_0) > 0$, then $W(x) > 0 \forall x \in I$.
iii) if $W(x_0) < 0$, then $W(x) < 0 \forall x \in I$.
In other words, if the sign of the
Wronskian $W(x)$ given by a set of functions
 $\{Y_{1}, -\cdots, Y_{n}\}$ changes on the interval I , then
this set of functions cannot be a set of
solutions for any linear homogeneous ODE.

 $\frac{\text{Proposition 9.6:}}{\text{If } Y_1, Y_2, ---, Y_n \text{ are solutions of the linear }} ODE L(Y) = 0, the following are equivalent:}$